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Models with information frictions are often used in macroeconomics to explain the sluggish adjustment of
economic variables observed in empirical data. Despite their relevance, these models are difficult to solve
due to the higher-order beliefs - agents must form expectations about others’ expectations. Conventional
approaches, such as Kalman filtering, require repeated iterations, leading to computational inefficiency.

This note proposes a streamlined approach to solving such models in sequence space, reducing the
computation to a single matrix inversion and enabling faster, more practical implementation. The main idea
is to observe that any equilibrium variable can be represented as an MA(∞) process of the exogenous shocks.
Thus, together with analytical formula for the expectation of the exogenous shocks, a simple linear system can
be constructed to solve for the impulse response of the equilibrium variables to the exogenous shocks.

In this note, I first present a simple model with incomplete information in Section 1 and derive the
analytical solution in Section 2 using the technique in Angeletos and Huo (2021). Then, I show how to represent
the model in sequence space in Section 3 and provide a numerical example in Section 4 to illustrate the
computational simplicity of the proposed method.

1 Model

Consider the framework in Angeletos and Huo (2021), suppose the economy is populated by a continuum of
agents indexed by i ∈ [0, 1]. Each agent is affected by an demand shock, e.g. interest rate shock, denoted as
ξt.1 The demand shock is unobserved directly. Instead, each agent observes a signal of the shock sit and forms
expectations about ξt and yt. The information structure is given by

ξt = ρξt−1 + ϵt and ϵt ∼ N(0, 1) (1)

sit = ξt + ηit and ηit ∼ N(0, σ2) (2)

The optimal consumption of agent i is given by a permanent income consumption function2

cit = −β

[
Eit[ξt] +

∞∑
k=1

βkEit[ξt+k]

]
+ (1− β)

[
Eit[yt] +

∞∑
k=1

βkEit[yt+k]

]
(3)

*Northwestern University; KwokYan.Chiu@u.northwestern.edu
1This is the setup in Angeletos and Huo (2021). This is different from some HANK model that the shock and income

enter to the individual problem in current term instead of expectation. My method applies to general setups
2For now, this assumes away the wealth effect for simplicity. The method can be extended easily to include a budget

constraint.
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The aggregate output is assumed to be demand-driven

yt = ct =

∫ 1

0

citdi (4)

This implies that the equilibrium output is given by

yt = −β

[
Ēt[ξt] +

∞∑
k=1

βkĒt[ξt+k]

]
+ (1− β)

[
Ēt[yt] +

∞∑
k=1

βkĒt[yt+k]

]
(5)

where Ēt[.] denotes the average expectation, Ēt[.] =
∫ i

0
Eit[.]di.

The Equation 1, Equation 2, and Equation 5 define the rational expectation equilibrium of the model. One
can iterate on Equation 5 to obtain the equilibrium output, which involves composition of average expectation
operator, Ēt[Ēt+1...[.]], or also known as the higher-order beliefs. In the absence of complete information, the
law of iterated expectations does not hold for the average expectation operator. Intuitively, one solution is to
evaluate Equation 5 directly by repeatedly applying the average expectation operator. However, this means that
many Kalman filtering iterations are required, which is computationally expensive.

2 Analytical Solution

Using the technique in Angeletos and Huo (2021), the analytical solution to the model is given by the following

yt =
∆b∗

(1− θL)(1− ρL)
ϵt (6)

where L is a lag operator and θ and ∆ are solution of some polynomial equation with both θ < 1 and ∆ < 1.3

b∗

(1−ρL)ϵt is the solution for complete information equilibrium.
While this analytical solution is a powerful tool to draw insights from the model, it is not always available for

more complicated problems. For example, one may consider a model that allows heterogeneity in β and saving.
The analytical solution for this problem is not available. Thus, a lot of these models are solved numerically.

3 Sequence space Representation

The idea of sequence space representation is to find a linear system where the solution of the system is the
impulse response function, or equivalently the coefficients of an MA(∞) process. Let h(x) be an infinite
dimensional vector, where the t-th element is the impulse response of variable xt to a shock to ϵ0. Hence,

h(x) =
[
dx0

dϵ0
dx1

dϵ0
dx2

dϵ0
· · ·

]′
Our goal is to solve for h(y), the impulse response of yt to a shock to ϵ0. Taking derivative of Equation 5 against
the shock ϵ0, we obtain

dyt
dϵ0

= −β

∞∑
k=0

βk dĒt[ξt+k]

dϵ0
+ (1− β)

∞∑
k=0

βk dĒt[yt+k]

dϵ0

3See Angeletos and Huo (2021)
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Collecting the equations across time, we have

h(y) = −β


m′W0(ξ)

m′W1(ξ)

m′W2(ξ)
...

+ (1− β)


m′W0(y)

m′W1(y)

m′W2(y)
...

 (7)

wherem is a vector of discounting factorm =
[
1 β β2 · · ·

]′
andWt(x) is the derivative of time-t expectation

of variable x in the future, given by Wt(x) =
[
dĒt[x0]

dϵ0

dĒt[x1]
dϵ0

dĒt[x2]
dϵ0

· · ·
]′

. Our goal is to connect Wt(ξ) and
Wt(y) to the impulse response of ξt and yt.

In the following, I show the connection between Wt(x) and h(x). Let hy,k be the k-th element of h(y),
the time-k response of yt to a shock to ϵ0. Recall that coefficients of an MA(∞) process is exactly the impulse
response function. Thus, for each individual agent i, we have

Ei,t[yt+k] = hy,0 Ei,t[ϵt+k]︸ ︷︷ ︸
=0

+hy,1 Ei,t[ϵt+k−1]︸ ︷︷ ︸
=0

+ · · ·+ hy,kEi,t[ϵt] + hy,k+1Ei,t[ϵt−1] + · · ·

Ei,t[ϵt+k] is zero for k > 0 because the future shock is uncorrelated with the information set at time t. Taking
average across agents and differentiating against ϵ0, we have

dĒt[yt+k]

dϵ0
= hy,k

dĒt[ϵt]

dϵ0
+ hy,k+1

dĒt[ϵt−1]

dϵ0
+ · · ·

This implies that the vector of expectations of future yt could be written as

Wt(y) =


dĒt[yt]
dϵ0

dĒt[yt+1]
dϵ0

dĒt[yt+2]
dϵ0
...

 =


dĒt[ϵt]
dϵ0

dĒt[ϵt−1]
dϵ0

dĒt[ϵt−2]
dϵ0

· · ·
0 dĒt[ϵt]

dϵ0

dĒt[ϵt−1]
dϵ0

· · ·
0 0 dĒt[ϵt]

dϵ0
· · ·

...
...

...
. . .


︸ ︷︷ ︸

≡Mϵ
t

h(y)

The Mϵ
t matrix is an upper triangular Toeplitz matrix, formed by the derivative of the expectation of the past

and current shock against the initial shock. Intuitively, since yt follows an MA(∞) process, the initial shock ϵ0

affects the expectation of yt through the expectation of the current and past shock. The same logic applies to ξt

as well. The system of equations can be written as

h(y) = −β


m′Mϵ

0

m′Mϵ
1

m′Mϵ
2

...

h(ξ) + (1− β)


m′Mϵ

0

m′Mϵ
1

m′Mϵ
2

...

h(y)

The terms in the matrix Mϵ
t can be calculated analytically. Since the signal sit and shock process ξt are

exogenous, Wiener-Hopf filter can be applied to obtain the exact values of the terms in Mϵ
t . In particular, the
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individual expectation of the current and past shock is given by

Ei,t[ϵt−k] =
λσ2

ρ

(
Lk + λLk−1 + · · ·+ λk

) sit
(1− ρL)(1− λL)

(8)

where L is the lag operator, Lxt = xt−1, and λ is a constant given by λ =
1
2

(
ρ+ 1

ρ (1 +
1
σ2 )−

√
(ρ+ 1

ρ (1 +
1
σ2 ))2 − 4

)
. Intiutively, the signals in the far past have less impact on the

current expectation. This explains why there is a geometric decay in the weights for the past signals. However,
since the expression is evaluating the expectation of a past shock at time t − k, the optimal filter should apply
more weights to k-time past signals. This explains the presence of the λk term in the front. Taking average
across agents, we have

Ēt[ϵt−k] =
λσ2

ρ

(
Lk + λLk−1 + · · ·+ λk

) (
1 + λL+ λ2L2 + ...

)
ϵt (9)

The coefficient on the ϵt−s is the response of Ēt[ϵt−k] to a shock to ϵt−s, i.e. dĒt[ϵt−k]
dϵt−s

. Recall that our goal is to

find the impulse response of Et[ϵt−k] to ϵ0. Set s = t, we have dĒt[ϵt−k]
dϵ0

. Hence, we can fill up the matrix Mϵ
t by

evaluating the coefficients of Equation 9 for k = 0, 1, 2, .... This seems to be taxing, but the calculation involves
only polynomial multiplication, which can be done efficiently in many programming libraries.

Finally, to solve for the impulse response of yt to a shock to ϵ0, we can simply invert the linear system. Since
ξt follows an AR(1) process, the impulse response of ξt to a shock to ϵ0 is given by

h(ξ) =
[
1 ρ ρ2 · · ·

]′
The impulse response of yt to a shock to ϵ0 is finally given by

h(y) = −

I− (1− β)


m′Mϵ

0

m′Mϵ
1

m′Mϵ
2

...




−1

β


m′Mϵ

0

m′Mϵ
1

m′Mϵ
2

...

h(ξ)

where I is the identity matrix. Hence, to solve for the impulse response of yt to a shock to ϵ0, we only need
to invert a single matrix. This is computationally easier than applying repeated Kalman filtering. This method
could be extended to more complex problems without significant modification. For example, one may consider
a model with saving and multiple permanent types. The method can be extended to include an intertemporal
budget constraint and multiple types of agents, where the aggregate policy function may take a different form.
Even then, the method of connecting the impulse response of the expectation of the equilibrium variable to
the impulse response of the variable itself remains the same.

4 Numerical Example

In this section, I provide a numerical example to illustrate the computation of this method. Since the impulse
response function is of infinite length, a truncation is necessary to obtain numerical results. In this section,
I compare the impulse response function obtained from the proposed method to the analytical solution in
Angeletos and Huo (2021).

In this example, I consider an expansionary shock to ξ (i.e. ϵ0 = −1). With a truncation of 50 periods, the
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proposed method provides a good approximation to the analytical solution.

Figure 1. Impulse Response Function from Analytical Solution and Proposed Method

Note: The figure shows the impulse response function of yt to a shock to ϵ0 = −1. The blue line is
the impulse response function obtained from the analytical solution in Angeletos and Huo (2021).
The red line is the impulse response function obtained from the proposed method with truncation
set to 50.
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